Wireless systems could improve neural prostheses
نویسندگان
چکیده
In the past, doctors usually treated disorders of the nervous system by substitution instead of correction, including wheelchairs for walking, braille for text, and sign language for speech. However, as our understanding of the nervous system increases, so does our ability to treat its disorders with neural prostheses that directly stimulate the nervous system. Cochlear implants are one example of neural prostheses. Control of such prosthetics with brain-derived electrical signals is now possible due to the development of microelectrode arrays such as the Utah Intracortical Electrode Array (UIEA), the University of Florida flexible substrate microelectrode array, and others.1–3 A large number of microelectrodes are typically needed, especially when interfacing with the central nervous system to restore a sensory function such as vision or hearing, because the quality of perception increases with the number of stimulated sites and the stimulation rate.4–6 On the other hand, using a large bundle of ultra-thin wires that pass through the skin to record neural activity from implanted microelectrode arrays introduces significant technological hurdles for the development of practical prosthetic devices. Communication with implanted microelectrodes is better accomplished wirelessly. The Interstim-3 and the UIEA-based telemetry circuit are the state of the art in microelectrode arrays with wireless transmitters mounted on them.7, 8 Both systems face major challenges, however, including crosstalk and digital interference. An additional limitation is that data transmission in these systems is based on fixed data rates and synchronous protocols, in which actions occur at specific times. An asynchronous scheme, in which actions occur in response to a signal, would provide more flexibility and adaptability to different environments. Figure 1. Standard address event representation (AER) protocol. The address of the spiking neuron is encoded as a unique binary address, which is broadcasted on a digital bus. The decoder on the receiver decodes the address and directs the signal to the appropriate location. The diagram is modified from another paper.9
منابع مشابه
Control of neural prostheses for grasping and reaching.
In recent years several neural prostheses have been developed and tested as orthoses or as therapeutic systems for hemiplegic and tetraplegic subjects aiming to improve the upper extremities function. The use of neural prostheses demonstrated that the targeted group of subjects could significantly benefit from functional electrical stimulation that is integrated in goal directed movements. In t...
متن کاملToward optimal target placement for neural prosthetic devices.
Neural prosthetic systems have been designed to estimate continuous reach trajectories (motor prostheses) and to predict discrete reach targets (communication prostheses). In the latter case, reach targets are typically decoded from neural spiking activity during an instructed delay period before the reach begins. Such systems use targets placed in radially symmetric geometries independent of t...
متن کاملEnhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.
OBJECTIVE A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. APPROACH In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that u...
متن کاملAn Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems
An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...
متن کاملFreedom of Thought and Mental Integrity: The Moral Requirements for Any Neural Prosthesis
There are many kinds of neural prostheses available or being researched today. In most cases they are intended to cure or improve the condition of patients affected by some cerebral deficiency. In other cases, their goal is to provide new means to maintain or improve an individual's normal performance. In all these circumstances, one of the possible risks is that of violating the privacy of bra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007